Llama antibodies have 'significant potential' as potent COVID-19 treatment

A unique type of tiny antibody produced by llamas could provide a new frontline treatment against Covid-19 that can be taken by patients as a simple nasal spray.
Research led by scientists at the Rosalind Franklin Institute has shown that nanobodies -- a smaller, simple form of antibody generated by llamas and camels -- can effectively target the SARS-CoV-2 virus that causes Covid-19.
They found that short chains of the molecules, which can be produced in large quantities in the laboratory, significantly reduced signs of the Covid-19 disease when administered to infected animal models.
The nanobodies, which bind tightly to the SARS-CoV-2 virus, neutralising it in cell culture, could provide a cheaper and easier to use alternative to human antibodies taken from patients who have recovered from Covid-19. Human antibodies have been a key treatment for serious cases during the pandemic, but typically need to be administered by infusion through a needle in hospital.
Public Health England has described the research as having "significant potential for both the prevention and treatment of Covid-19," adding that the nanobodies "are among the most effective SARS-CoV-2 neutralising agents we have ever tested."
"Nanobodies have a number of advantages over human antibodies," said Professor Ray Owens, head of protein production at the Rosalind Franklin Institute and lead author of the research. "They are cheaper to produce and can be delivered directly to the airways through a nebuliser or nasal spray, so can be self-administered at home rather than needing an injection. This could have benefits in terms of ease of use by patients but it also gets the treatment directly to the site of infection in the respiratory tract."
The research team, whose findings are published in the journal Nature Communication, were able to generate the nanobodies by injecting a portion of the SARS-CoV-2 spike protein into a llama called Fifi, who is part of the antibody production facility at the University of Reading.
The spike protein is found on the outside of the virus and is responsible for binding to human cells so it can infect them.
Although the injections did not make Fifi sick, it triggered her immune system to fight off the virus protein by generating nanobodies against it. A small blood sample was then taken from the llama and the researchers were able to purify four nanobodies capable of binding to the Covid-19 virus.
The nanobodies were then combined together into chains of three to increase their ability to bind to the virus. These were then produced in cells in the laboratory.
The team found three nanobody chains were able to neutralise both the original variants of the Covid-19 virus and the Alpha variant that was first identified in Kent, UK. A fourth nanobody chain was able to neutralise the Beta variant first identified in South Africa.
When one of the nanobody chains also known as a trimer were administered to hamsters infected with SARS-CoV-2, the animals showed a marked reduction in disease, losing far less weight after seven days than those who remained untreated. Hamsters that received the nanobody treatment also had a lower viral load in their lungs and airways after seven days than untreated animals.
"Because we can see every atom of the nanobody bound to the spike, we understand what makes these agents so special," said Professor James Naismith, Director of the Rosalind Franklin Institute, who helped lead the research.
The results are the first step towards developing a new type of treatment against Covid-19, which could prove invaluable as the pandemic continues.
A standard EDITORIAL TRACKING SYSTEM is utilized for manuscript submission, review, editorial processing and tracking which can be securely accessed by the authors, reviewers and editors for monitoring and tracking the article processing. Manuscripts can be uploaded online at Editorial Tracking System (Online Manuscript Submission System) or forwarded to the Editorial Office at jbiopharm@scholarlypub.com.
Media Contact:
Alina Grace
Journal Manager
Asian Journal of Biomedical & Pharmaceutical Sciences
Email: jbiopharm@scholarlypub.com